I M.Tech - II Semester - Regular Examinations - AUGUST 2018

FINITE ELEMENT METHODS IN ENGINEERING (MACHINE DESIGN)

Duration: 3 hours
Max. Marks: 60
Answer the following questions.

1. a) What is Rayleigh-Ritz method? Explain. 7 M
b) Explicate weighted residual method with the help of an example.

8 M
(OR)
2. a) Discuss the basic steps involved in finite element method.
b) With the help of neat sketches, discuss the node numbering scheme in FEM. 8 M
3. Compute the nodal displacements, stresses and reaction at the support in the stepped bar subjected to an axial loads of $P 1=3000 \mathrm{~N}$ and $\mathrm{P} 2=2000 \mathrm{~N}$ as shown in Figure1. The modulus of elasticity of the material of the bar is $2.1 \times 10^{5} \mathrm{MPa}$.

Figure 1

(OR)

4. a) Estimate the stiffness matrix and the deflection at the centre of the simply supported beam of length 3 m . A 50 kN of load is acting at the center of the beam. Take flexural rigidity $\mathrm{EI}=800 \times 10^{3} \mathrm{~N}-\mathrm{m}^{2}$.

10 M
b) Derive element stiffness matrix of plane truss element.
5. a) The nodal coordinates of a triangular element are $1(1,3)$, $2(5,3)$ and $3(4,6)$. At a point P inside the element, the x -coordinates is 3.3 and the shape function $\mathrm{N}_{1}=0.3$.
Determine the other shape functions and y-coordinates of the point P .
b) An axisymmetric ring element is shown in Figure2 . Derive the matrices, $[\mathrm{B}]$ and $[\mathrm{D}]$.
Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $=0.33$. 10 M

Figure2
(OR)
6. a) Derive the stiffness matrix for a two dimensional four nodded isoparametric quadrilateral element.
b) Evaluate the integral $\int\left(2+x+x^{2}\right) d x$ by one point and two point Gaussian quadrature between the limits -1 and +1 and compare with exact value.
7. Compute the Eigen values and Eigen vectors for the stepped bar shown in Figure3.

$$
\begin{aligned}
& \mathrm{A}_{1}=1200 \mathrm{~mm}^{2}, \mathrm{~A}_{2}=900 \mathrm{~mm}^{2}, \mathrm{E}=200 \mathrm{GPa}, \mathrm{~L}_{1}=400 \mathrm{~mm}, \\
& \mathrm{~L}_{2}=300 \mathrm{~mm} \text { and mass density }=7840 \mathrm{~kg} / \mathrm{mm}^{3} .
\end{aligned}
$$

Figure3

(OR)

8. a) Discuss the various convergence requirements used in finite element analysis.

6 M
b) Compare h -refinement and p-refinement methods. 4 M
c) What is Pascal's triangle? How it is useful in selecting the polynomials for representing element field variables. 5 M

